

 2

Table of Contents

1. Syntax Analysis.. 3

1.1. Model of object's content .. 3

1.2. Inspections ... 4

1.3. Disabling compilation and inspection .. 4

1.4. Code complition feature .. 4

1.5. Parameter prompting... 5

2. Versioning.. 5

2.1. Creation of revision .. 5

2.2. List of modified objects .. 6

2.3. Comparison revisions ... 7

3. Object comparison window .. 9

3.1. Markers overlaying differs... 9

3.2. Comparing two archival versions of the object.. 10

3.3. Comparison algorithm.. 11

4. Administration Panel.. 13

4.1. Access... 13

4.2. Authorization.. 13

4.3. Server management... 14

4.4. Instance management.. 16

5. Management of active patches ... 17

5.1. Management of active patches in the module „Objects” .. 17

5.2. Renaming of module „Project” to „History”.. 18

6. Uploading patches ... 18

6.1. Tab „Default”.. 19

6.2. Tab „Advanced”.. 19

6.3. Tab “Compatible” ... 20

7. Automatic update.. 20

7.1. Instance configuration.. 21

7.2. Creating/updating structures for external applications... 21

7.3. Principles of AutoUpdate ... 21

8. Server configuration ... 22

8.1. Server administrator account... 22

8.2. Selection of automatically started version of jDESIGNER'a.. 22

 3

1. Syntax Analysis

Since version jPALIO 7.4 jDESIGNER has built-in compiler at the client side. It allows to detect simple

errors in code and warn programmers about it directly in code.

Compilation process and highlighting errors start always after opening object and after each change

in code. At now designer has support objects of type jPalio.

1.1. Model of object's content

After generation the model by compiler there is a possibility to show model in popup window. To do

this right click on the object in the editor tree and choose Show object model.

Errors detected by the compiler are shown in the code by changing the style of the text or highlight

text in the editor.

Hovering your mouse on an error in the code causes the appearance of the window displays the

contents of the error. In addition, the tab below the editor problems is displaying a list of all errors

together with the position where the error occurs. Clicking the mouse on the bug will automatically

move to the caret where it occurs.

 4

1.2. Inspections

After creating the object model there are made a number of code inspections. They are designed to

detect more sophisticated bugs in the code.

Examples of inspections are:

• Search for non-existent jPALIO elements (objects, pages, privileges, etc.)

• Find typos in a global variables

• Unnecessary mapping parameters

• Select the deprecated methods

1.3. Disabling compilation and inspection

Performing an inspection is labor intensive for the CPU and can be disabled. Below the editor is a

combobox in which you can choose one of the four options described below:

• None - there is no syntax highlighting in the editor

• Syntax – there is only a syntax analyze and text elements are colored only from

information contained in syntax

• Compilation – syntax parsing is performed, and compilation is made. Coloring is basis on

the model and syntax, together with an indication of fundamental errors

• Inspections – syntax parsing is done, the compilation is made, and additional inspections

are done. On the basis of all such information is colored text, and selection errors.

1.4. Code complition feature

Now there are code complition feature after clicking Ctrl+Space. The editor can prompt jPalio

function or object code.

 5

1.5. Parameter prompting

The editor is also available prompting the function parameters. When you place inside the

parentheses of the method of carriage and click Ctrl + Shift + Space is prompting parameters.

2. Versioning

Versioning is a mechanism that allows the database to store the historical versions of objects for later

tracking the change history of the object. Each user can work at any time preview archived content

objects and restore their contents or fragments.

We have two types of archival objects:

• Automatic archiving – it is created automatically during working with object every 15 minutes

from the last backup and when another user try to save this object. It is also created before

deleting the object.

• Revision - created at the request of the user, it is based on window for creating a revisions,

with comments and unique number. It fulfill a revisions from SVN or other version control

systems.

2.1. Creation of revision

In order to call window which is allow to creation of the revision, my must click the right mouse

button in the window, containing the list of available objects and then choose from the menu:

“Team” -> “Create Revision”. Depending on the current cursor position, we obtain the following

results:

• Selected area which does not belong to any object

 6

• Selected one of the available objects from the available list of objects – the chosen object

is selected by default as an object to be archived.

2.2. List of modified objects

To create a revision you must select at least one object and add a comment.

By default, only objects modified by the user who wants to create a revision are shown. It is also

possible to show all modified objects, you must only select the “Show objects modified by all users”,

which was shown in the screenshot below.

The list of modified objects can be presented in two ways:

1. In the table

 7

2. In the tree

In trees both modified objects and objects in the hierarchy above them are visible, what makes it

easier to find concrete object, as well as facilities management.

Right-clicking on the folder displays menu which enables the automatic checking/unchecking all

objects which are appear in this folder.

In order to distinguish objects removed from the existing, they are highlighted in gray. An example

was presented in the figure above.

2.3. Comparison revisions

In order to compare two different versions of an object, click the right mouse button on the selected

object, which brings up a menu, then select "Team", then choose one of available options:

1. “Compare with the latest version” – compares the local version of the object, with the

latest archives version of the object

2. “Compare with the latest revision” – compares the local version of the object, with the

latest archives version of the object, which was included in revision

3. “Show history” – displays a window containing the history of the object

 8

In the “Resource history” window, only the modifications that were included in the revision are

displayed by default. If you select “Show automatic archiving” , you will see automatic archiving of

the objects too.

When you select one of the archival version, and pressed the right mouse button menu appears on

the "Compare with local version”, which makes comparison of selected versions of the object with the

local version.

When you select two of the archival versions, and pressed the right mouse button menu appears on

the "Compare selected versions”, which makes comparison between two selected archival versions.

 9

3. Object comparison window

The main window contains two adjacent editors: left – showing archival object’s content and right

containing local version of the object. Over the editors there are labels describing which version there

is into editor.

Right editor with local version is integreted with the main editor in designer application, it means that

all changes made here are automaticly applying in the main editor and saving also is the same as save

on main application level.

3.1. Markers overlaying differs

Main functionality od the comparison frame is showing differs betweene two difrent version of the

object. Graphicly it’s represented by translucent markers overlaying corespodnding code fragments.

Depending on the type of changes made in the code there are three general differences represented

by independent markers:

• Addition – in local version there is a code fragment, that didn’t exsist into archived content.

It’s posible to remove added fragment from local version of the object by pressing button.

Added code is marked in grey.

 10

• Removal – in local version don’t exsist the fragment, that exsisted in archived content. The

fragment is marked in green and it’s available to copy the fragment to local editor by pressing

button.

• Edition – the fragment occurs both in local and archived version, but their contents are

different. The fragments in both editors are marked in blue color. Action fired on button is

replacing local fragment by their corresponding fragment in history.

In right corner of the comparison window there is a button “Copy all differencess”. It’s dedicated to

remove all differencess by moving archived content (left editor) to local version of the object. After

presing the button all content of the local object’s version is replacing by archived code collected in

left editor. This functionality may be used to reverting archived versions.

3.2. Comparing two archival versions of the object

The window allows not only compare local version with archival but also it’s posible to compare both

archivals. In the context it’s available only preview contents of the object under the versions without

any changes. It’s clear that icons on marker to move content form one editor to other is disabled, the

right editor is in read-only mode and the button “Copy all differences” is inactive.

 11

3.3. Comparison algorithm

Comparison engine is fired even befor displaying its on window and it isn’t refreshig after making any

changes in local editor so appearing new difference or removing old are not recognise automaticly

and not marked in markers overlay. To refresh and re-compare versions you need to press “Compare

again” button that it’s situated in the left top corner of the window.

Re-comparing feature allows us to chose comparison mode - the way how the algorithm should

divide the code into elements to compare. The single element has the property, that the matching

elements in both codes are compared like common strings – char by char. It’s mean that even small

differ on one char causes that the elements are treated like different. Only complete compatibility

between elements may be recognized as identical.

To chose comparing mode you need only select from situated next to “Compare again” button list

proper option. There are two comparison mode possible now:

• Split lines – default mode, all lines is accepted as single elements for the comparison

algorithm. Even one char differ in the matching lines is recognizing as all line is differ.

 12

• Split tokens – algorithm divide code into fragments based on lexicographical code

analysis. Single token is often shorter that single line and match to jPALIO language

elements like variable name, object’s code, string or function name. Because of to the

tokens recognizing is using syntax analyze even small syntax error may cause, that

tokenizer recognize two different tokens sets so you can see that caparisoning versions

look like completely different despite in the fact it may not be true (General it can

appears when you don’t close the bracket or leave unquote).

 13

4. Administration Panel

Administration panel is “rich” version of already known administration page – html.info. Due to the

lack of authorization, it's recommended to disable access to old administration page – html.info (you

can do it by removing few lines from web.xml – Tomcat's or another container's servlets configuration

file).

4.1. Access

Administration panel works as common web application. To access administration panel, just type url

in your browser: http://server_address/palio/html.run, where:

• server_address is host name (including optional port number after colon),

• palio (name of Tomcat's or another container's context).

4.2. Authorization

Access to the panel requires authority and only users with expected privileges can use it. There are 2

type of authority:

• Logging to server – After it you have full access to manage server and all of their

instances too. To login to sever you should select on home page option Server from

“Target type” list and fill valid login and password to the server administration account

(more information can be found in documentation of jPALIO server configuration file –

config.xml)

• Logging to instance – The panel allows you to sign directly into the specified instance

without need of logging to the server first. To follow this case, you can use your private

login and password valid in jDESIGNER application to connect to the instance (specified

account must have “designer” role associated). If you want to log into specified instance

you should select on home page Instance option from “Target type” list and fill below

“Instance name” where you have a jDESIGNER account.

 14

It is possible to set home page to automatically connect to the specified instance. To do this, just type

SelectedInstance=instance_name parameter in url, eg.

address http://server_address/palio/html.run?_SelectedInstance=foo automatically open logging

page to foo instance.

User, who logs directly to an instance, may still log into another instances at the same time. Home

page – besides logging form – always displays instances that you are already logged in and you can

quickly switch to these instances just by clicking on their names.

4.3. Server management

If you are logged to server, you can see list of all instances started on the server. When you click on

their names you will be able to manage the selected instance. (More details about instance

management will be discussed later).

 15

You can perform administration tasks using menu on the left side of panel.

• Messages – list of messages that server “wants” to display to the user.

• Administration – The main administration actions page. Recently there is only „Rescan

instances directory” button, enabling rescan the server directory to refresh instances list

and start all newly added instances (without restarting of server).

• Environment – Information page displays server's environment parameters.

• Monitor – list of all Groovy classes hold by JVM. Additionally you can see here how many

versions of the class exists (saving Groovy class through jDESIGNER application creates

new version of that class, some data however may still reference to the “previous”

version).

• Threads – List of all server threads. When you click any thread, it appends stack trace

content for this thread.

• Designer history – module dedicated to tracing of user activity. This activity for selected

instances is presented using sheet with 15 minutes resolution. You can filter presented

data by selecting particular developer from the User list. When cursor is over non-empty

cell, tooltip with detailed data is displayed.

 16

4.4. Instance management

The aim of the functionality featured by the administration panel in the area of instance management

is to complement features of jDESIGNER application.

• Main instance management page – besides information table there are here also „Start

AutoUpdate” button, that allows you to force re-execution of automatic update of

database structure (scanning of existing structure and filling gaps). You can also use form

“Install application” to install database structures for external application to any selected

connector. At the moment, there are 3 applications possible to install structures for: CMS

– Content Management System, Newsletter – application which dispatch mails to

registered subscribers and Ads – advert server. CMS application requests installed

structures for all three applications, CMS, Newsletter and Ads. You can access this page

always by clicking “Instance” on the left menu.

• Connectors – displays connector list and allows management of them.

• Modules – Table of all available modules in managed instance. It’s possible to view only

headers of all functions available within each module or detailed JavaDoc

documentation.

• Cache – cache management module. Allows not only listing all caches in the instance but

 17

also flushing content from selected or all buffers.

• Threads – exact as threads table in server management, but shows only threads owned

by current instance.

• Messages – list of user messages which describes state of instance.

• Logs – interactive view of instance's logs which uses AJAX technology (web equivalent of

tail command known from Linux / Unix)

• Designer history – Developers activity tracing module. Exact as “Designer history” in

server management except that shows only activity in the selected instance.

5. Management of active patches

Since version jPALIO 7.4 management of patches has been transferred to module „Objects”. In the

panel appearing in a top part of window, button has been added which displays active patch.

5.1. Management of active patches in the module „Objects”

Depending on your patch it is possible to obtain the following results:

• The name of patch, that is active.

• “No active process”, when there is no active patch.

• The patch name on a red background, in case you try to set closed patch as an active.

Described button is located as it's presented on the picture below:

Pressing the button displays a window containing a list of available patches as well as change the

active patches.

 18

5.2. Renaming of module „Project” to „History”

After transferring of active patches management to module “Objects”, module “Projects” contains

only history viewer. Because of this, module “Project” has been renamed to “History”.

6. Uploading patches

New version of jPALIO server significantly extends configuration of patches uploading process. Patch

uploading configuration window has been divided into three independent tabs. Tab “Compatible”

holds configuration known from previous versions. The other two newly added tabs describing full

advanced and simplified configuration. Main feature of introduced changes is possibility to determine

taken actions for each type of elements separately. (e.g. you can upload roles, privileges, roles to

privileges assignments without uploading pages). In addition to objects and multimedia defined a

new type of action “Upload but overwrite only older” (the action causes replacement of element by

element from patch only if modification time of element from patch is newer than modification time

of element on target server). There is also another feature which gives you capability to enable extra

action to be taken on uploaded tasks (you can choose to automatically enable/disable/leave as it is in

the patch all tasks uploaded from patch).

At the same time due to transferring active patches management to the module “Objects”, “Upload

patch” action was also transferred to that module.

 19

6.1. Tab „Default”

Tab „Default” is default, simplified form of new configuration. In accordance with the new

configuration (similar to the „Advanced” tab), user must determine expected actions to be taken for

each type of uploaded elements. In case of „Default” tab, options are grouped in a form convenient

for standard users:

• Option „Application code” is action selection for elements: directories, MIME types,

objects, multimedia, pages, privileges and privileges to pages assignations,

• option „Roles” is responsible for roles and privileges assigned to roles,

• option „Tasks” is responsible for actions taken on tasks and groups of tasks,

• options „Parameters” concerns global parameters (exactly as in “Advanced” tab),

• option „State of tasks” describes extra action which may be performed on all uploaded

tasks (automatic activation/deactivation/leaving as it was in the patch).

Selection of action “Upload but overwrite only older” in the “Application code” option consideres

only objects and multimedia. For other elements there action is identical to action ”Upload and

overwrite all”.

6.2. Tab „Advanced”

Tab „Advanced” allows to selection individual actions for each type of elements (as in the image

below). User is responsible for choosing such configuration which is sensible. Because many of these

 20

is potentially misleading, you should take a look for hints written in red font in the bottom part of the

window.

Except of non-joining elements into larger groups, this tab is fully compatible to the “Default” tab.

6.3. Tab “Compatible”

This tab has been transferred unchanged from previous versions of jDESIGNER. Aim of the existence

of this tab is to ensure continuity without forcing users to learn new functionality. However, it is

recommended to use “Default” or “Advances” tab due to more flexible configuration.

7. Automatic update

jPALIO 7.4 introduced a major extension to AutoUpdate. Since that moment, each process of

automatic update of database structures will be preceded by scanning of actual database structure.

So the update process may not only update expected structures but also make up any deficiencies.

 21

Because of that, users who interfere with the system tables, should properly configure AutoUpdate

process, which tables or sequences should be ignored.

7.1. Instance configuration

To mark which tables or sequences should be ignored, you have to add the following entries to the

instance configuration file. For these tables, there will be also ignored constraints (foreign keys) which

refer to those tables.

<autoupdate>

 <table name="P_OBJECTS" action="skip"/>

<sequence name="P_OBJECTS_S" action="skip"/>

</autoupdate>

In most cases, configuration of AutoUpdate may be skipped.

7.2. Creating/updating structures for external applications

AutoUpdate process has been extended on other non-system structures. It may be used to create or

update structures for several applications like CMS, Newsletter or Ads – these processes may be

launched within administration panel.

7.3. Principles of AutoUpdate

Algorithm of automatic update is based on several principles:

• externally added unknown tables or columns will not be removed,

• only selected tables or columns (which were hard-coded into update algorithm) will be

removed,

• missing tables, columns and constraints will be restored,

• size of column may be expanded, never shortened – even when expected size is lower

than actual,

• column constrains which that interfere with expected constrains will be removed and

replaced by expected ones..

 22

8. Server configuration

8.1. Server administrator account

Account of server administrator is used to manage the server. In administration panel you can sign

directly into particular instance or whole server (in these case you have access to all instances). Server

administrator account is defined in config.xml file. Password to the account may be given in overt or

encoded form. If you decide to give encoded form, to generate a password, you have to use a hash

function and then Base64 encoding. In these case you have to type a name of used hash function

(SHA1, MD5, etc.). In case of skipped hashing, as a password just type your original password in overt

form (no Base64)

<admin login="admin" password="password" algorithm="sha1"/>

To get encoded password, you can use Linux / Unix command:

echo -n "hasło" | openssl dgst -sha1 -binary | openssl base64

8.2. Selection of automatically started version of jDESIGNER'a

When you click on the link jDESIGNER next to the name of an instance in the administration panel (or

html.info), appropriate version of application is started. Till now, mapping of server versions to client

versions was created arbitrarily. Since jPALIO 7.4, selection is done automatically. Because of this, we

give you an opportunity to influence, what version of application will be launched for your server. You

can add the following entry in configuration file

<designer version="latest"/>

if you want to start always latest version (appropriate for your server version) or

<designer version="stable"/>

if you want to start most stable version for your server. Parameter “version” is optional and default

choice is to start stable version.

 23

jPALIO SA

ul. Joteyki 20

02-317 Warszawa

Tel: +48 22 424 87 88

Fax: +48 22 313 23 37

Email: kontakt@jpalio.com

www.jpalio.com

